Методи дослідження мітохондрій
Метод «заморожування - травлення»
використовується для вивчення зовнішньої поверхні кліток і мембран. У даному випадку клітки заморожують при дуже низькій температурі і замороженому блоці розколюють лезом ножа. Вміст льоду навколо кліток (і в меншому ступені усередині кліток) знижують сублімацією води у вакуумі при підвищенні температури (процес називають вакуумним сушінням). Ділянки клітини, піддані такому травленню, потім відтіняють для готування платинової репліки.
Використовуючи для контрастування відтінення солями важких металів, можна спостерігати в електронний мікроскоп ізольовані макромолекули, наприклад, ДНК або великі білки, а після негативного контрастування можна розгледіти навіть дрібні деталі. При готуванні зразків для негативного контрастування досліджувані молекули наносять на тонку плівку вуглецю (практично прозору для електронів), потім її змочують концентрованим розчином солей важких металів, наприклад, уранілацетата. Після висушування зразка тонка плівка солей важких металів рівномірно покриває вуглецеву підкладку, за винятком ділянок, зайнятих адсорбованими макромолекулами. Речовина макромолекул більш проникна для електронів у порівнянні з ближніми ділянками, покритими солями важких металів; за рахунок цього виникає звернене або негативне зображення молекули.
В даний час можна спостерігати з високим дозволом навіть внутрішні деталі тривимірних структур, таких, як віруси. Для цього використовують метод кріоелектроної мікроскопії,
де дуже тонкий (приблизно 100 нм), швидко заморожений шар вологого зразка поміщають на мікроскопічні ґрати. За допомогою спеціального пристосування гідратований зразок утримують при - 160сС у вакуумі мікроскопа. Таким способом можна спостерігати матеріал практично безпосередньо: без фіксації, фарбування і сушіння.
При біохімічному аналізі використовують такі методи дослідження, як гібридизація, імуноцитохімія з застосуванням моноклінних антитіл на електронно-мікроскопічному рівні. За допомогою біохімічних методів вивчали АТФ-синтетазні комплекси внутрішньої мембрани.
Хоча дослідження мітохондрій у живій клітині пов'язано з відомими труднощами через те, що вони мають низький показник переломлення, їх усе-таки можна легко спостерігати в культурах тканини in vitro, зокрема під фазово-контрастним мікроскопом або в темному полі звичайного мікроскопа.
При фазово-контрастному та інтерференційному мікроскопуванні проходження світла через живу клітку фаза світлової хвилі міняється відповідно до коефіцієнта рефракції клітки: світло, яке проходить через відносно тонкі або відносно товсті ділянки клітки, затримується, і його фаза відповідно зрушується стосовно фази світла, яке проходить через відносно тонкі ділянки цитоплазми. Як у фазово-контрастному, так і в інтерференційному мікроскопі використовуються ефекти інтерференції, які виникають при рекомбінації двох наборів хвиль, що і створюють зображення клітинних структур. Обидва типи світлової мікроскопії широко використовуються для спостереження живих клітин.
Найпростіший спосіб розглянути деталі клітинної структури - спостерігати світло, яке розсіюється різними компонентами клітини. У темнопольному мікроскопі промені від освітлювача направляються збоку і при цьому в лінзи мікроскопа попадають тільки розсіяні промені. Відповідно клітина виглядає як освітлений об'єкт на темному полі. Одним з основних переваг фазово-контрастної, інтерференційної і темнопольной мікроскопії є можливість спостерігати рух клітин у процесі мітозу і міграції.
Високий контраст, який досягається за допомогою комп'ютерної інтерференційної мікроскопії, дозволяє спостерігати навіть дуже дрібні об'єкти.
За допомогою мікроманіпулятора було встановлено, що мітохондрії являють собою відносно стабільні утворення, які можна, неушкоджуючи, переміщати мікроголкою усередині клітини. Їх питома вага вище питомої ваги цитоплазми. Під час ультрацентрифугування живих клітин при 200000-400 000 g мітохондрії накопичуються у відцентрового полюса в неушкодженому виді.
Зміна об’єму і форми in vivo. Прижиттєві спостереження становлять особливий інтерес тоді, коли вони доповнюються цейтраферною мікрокінозйомкою. У культурі фібробластів можна спостерігати безперервні і часом ритмічні зміни об’єму, форми і розподілу мітохондрій. У русі мітохондрій розрізняють два основних типи: коливальні рухи і переміщення з однієї частини клітини в іншу, причому під час інтерфази вони значно більш активні, чим протягом мітозу. Іноді ці органоїди прикріплюються до оболонки ядра найближче до ядерця. Нитковидні мітохондрії можуть розпадатися на гранули, які здатні знову об’єднуватися в нитки. У деяких випадках рух мітохондрій зовсім пасивний й обумовлюється плином цитоплазми.
Різкі зміни об’єму і форми мітохондрій можуть викликатися хімічними, осмотичними і механо-хімічними реакціями. У живих клітинах спостерігаються цикли скорочень з малою амплітудою, які пов'язані з процесом окисного фосфорилювання. Відомо, що ціаністі сполуки, динітрофенол і інші інгібітори окислювання викликають набрякання, а надлишок АТФ - скорочення мітохондрій. Ці явища відбуваються і при зміні осмотичного тиску середовища. Неорганічний фосфат, відновлений глутатіон, Са2+ і жирні кислоти викликають набрякання, а дія АТФ запобігає цьому. Явище скорочення обумовлюється наявністю в мітохондріях скорочувального білка, аналогічного актоміозину м'язів. Більшої амплітуди змін об’єму можна досягти шляхом одночасного застосування декількох факторів (найбільш ефективними є Са2+ і тироксин) . Можливо, що набряканням мітохондрій, яке приводять до роз'єднання процесів окислювання і фосфорилювання, пояснюється фізіологічна дія цього гормону при гіперфункції щитовидної залози. Інші гормони, у тому числі гормон росту, окситоцин, вазопресин, інсулін і деякі кортикостероїди, також викликають набрякання мітохондрій. Крім того, це явище спостерігається і при патологічних станах організму, обумовлених, наприклад, впливом канцерогенів і
Подібні статті
Комахи прісних водойм
Ентомологія
– наука, яка безупинно розвивається, постійно збагачується новими даними і
новими ідеями. За 15 років ентомологія зробила величезний крок вперед у
розумінні багатьох аспектів екології, фізіології, поведінки і взаємозв`язків ком ...
Генетичні особливості мікроорганізмів
Надзвичайно важливим серед досягнень мікробіології останньої
чверті XIX ст. є відкриття неклітинних форм життя — вірусів. Тоді багато вчених
вважали, що бактерії є найменшими і найпростішими організмами, і що саме вони
стоять на межі живої ...