Поняття часу в класичній термодинаміці

До виникнення термодинаміки поняття часу по суті було відсутнє в класичній фізиці в тім виді, у якому воно розглядається в реальному житті й у науках, що вивчає процеси, що протікають у часі й має свою історію. Хоча в якості змінної час входить в усі рівняння класичної й квантової механіки, проте воно не відбиває внутрішні зміни, які відбуваються в системі. Саме тому в рівняннях фізики його знак можна міняти на зворотний, тобто відносити його як майбутньому, так і до минулого.

Положення істотно змінилося після того, як фізика впритул зайнялася вивченням теплових процесів, закони яких були сформульовані в класичній термодинаміці. Якщо колишня динаміка описувала закони руху тіл під впливом зовнішніх сил, свідомо відволікаючись від внутрішніх змін, що відбуваються в механічних системах, то термодинаміка змушена була досліджувати фізичні процеси при різних перетвореннях теплової енергії. Однак вона не аналізує внутрішню будову термодинамічних систем, як це робить статистична фізика, що розглядає теплоту як безладний рух величезного числа молекул.

Термодинаміка виникла з узагальнення численних фактів, що описують явища передачі, поширення й перетворення тепла. Самим очевидним є той факт, що поширення тепла являє собою необоротний процес. Добре відомо, наприклад, що тепло, що виникло в результаті тертя або виконання іншої механічної роботи, не можна знову перетворити в енергію й потім використовувати для виробництва роботи. Не менш відомо, що тепло передається від гарячого тіла до холодного, а не навпаки.

З іншого боку, шляхом точних експериментів було доведено, що теплова енергія перетворюється в механічну енергію в строго певних кількостях. Існування такого механічного еквівалента для теплоти свідчило про її збереження. Всі ці численні факти й знайшли своє узагальнення й теоретичне пояснення в законах класичної термодинаміки:

Якщо до системи підводить тепло Q і над нею виробляється робота W, то енергія системи зростає до величини U: U= Q + W.

Цю енергію називають внутрішньою енергією системи, і вона показує, що тепло, отримане системою, не зникає, а затрачається на збільшення внутрішньої енергії й виробництво роботи, тобто Q= U-W.

Процес, єдиним результатом якого було б вилучення тепла з резервуара, неможливий.

Наведені формулювання відбивають зв'язку, які існують між тепловою енергією й отриманої за її рахунок роботою. У першому законі мова йде про збереження енергії, у другому - про неможливість виробництва роботи винятково за рахунок вилучення тепла з одного резервуара при постійній температурі. Наприклад, не можна зробити роботу за рахунок охолодження озера, моря або іншого резервуара при сталій температурі. Таким чином, другий закон, або початок термодинаміки, можна сформулювати простіше, як уперше це зробив французький учений Сади Карно (1796-1832).

Неможливо здійснити процес, єдиним результатом якого було б перетворення тепла в роботу при постійній температурі.

Іноді цей закон виражають у ще більш простій формі:

Тепло не може перетекти мимовільно від холодного тіла до гарячого.

Надалі німецький фізик Рудольф Клаузиус (1822-1888) використовував для формулювання другого закону термодинаміки поняття ентропії, що згодом австрійський фізик Людвіг Больцман (18441906) інтерпретував у термінах зміни порядку в системі. Коли ентропія системи зростає, то відповідно підсилюється безладдя в системі. У такому випадку другий закон термодинаміки постулює:

Перейти на сторінку: 1 2


Подібні статті

Формування ботанічного саду навколо школи
Ботанічний сад - територія, на якій з науково-дослідною, просвітньою і навчальною метою культивуються і вивчаються рослини різних частин світла і різних кліматичних зон. Міжнародна рада ботанічних садів (англ. Botanіc Gardens Conservatіon Іnternatіo ...

Ссавці моря
Люди завжди любили дерева, траву, квіти, звірину, птахів. Але раніше любов як би дрімала, заколисана свідомістю невичерпності навколишнього багатства. Тепер же, коли ріст міст усе відчутніше пригноблює ліси й ми, опинившись один раз у цих ...

Головне меню